If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x-504=0
a = 3; b = 5; c = -504;
Δ = b2-4ac
Δ = 52-4·3·(-504)
Δ = 6073
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{6073}}{2*3}=\frac{-5-\sqrt{6073}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{6073}}{2*3}=\frac{-5+\sqrt{6073}}{6} $
| 3×-4y=19 | | 30(10x)^2=60000 | | (3x)/5=(x+3)/5 | | (X+8)/(x+9)=4/5 | | 7x-5=3x-35 | | 2x+9+139=180 | | 6x^2-4=12x | | 5n2+3n=84 | | 2c^+4=22 | | x(x2-1)(x3-1)=0 | | 9x+10=6x−2 | | -(-1)-2=x | | 4x+9+67=180 | | 4x+9+67°=180° | | (5x−2)+4=2 | | 3(4x-1)=-8(x-4)+5 | | 5x+8=3+2(3x–4) | | 1/3(x+15)=10 | | 2(8x-2)=5x-15 | | 2(8x-2=5x-15 | | 1/3(c+15)=10 | | 4y+9=−3 | | 3x-5+2x-19=21 | | 4x-11=-13+7x | | -5x+13=17-9x | | 75-3.25m=19.75 | | 5(2x+1)+4x-13=3(3x-2) | | 0.1m+0.08=0.06m=0.1 | | 2x+3=8x+3x-24 | | –2m^2–6=0 | | 2x-7=-14 | | -2x-80=-6x |